Voltage-dependent sodium and potassium channels in mammalian cultured Schwann cells.

نویسندگان

  • P Shrager
  • S Y Chiu
  • J M Ritchie
چکیده

Cultured Schwann cells from sciatic nerves of newborn rabbits and rats have been examined with patch-clamp techniques. In rabbit cells, single sodium and potassium channels have been detected with single channel conductances of 20 pS and 19 pS, respectively. Single sodium channels have a reversal potential within 15 mV of ENa, are blocked by tetrodotoxin, and have rapid and voltage-independent inactivation kinetics. Single potassium channels show current reversal close to EK and are blocked by 4-aminopyridine. From these results, and from comparisons of single-channel and whole-cell data, we show that these Schwann cells contain voltage-dependent sodium and potassium channels that are similar in most respects to the corresponding channels in mammalian axonal membranes. Cultured rat Schwann cells also have sodium channels, but at a density about 1/10th that of rabbit cells, a result in agreement with saxitoxin binding experiments on axon-free sectioned nerves. Saxitoxin binding to cultured cells suggests that there are up to 25,000 sodium channels in a single rabbit Schwann cell. We speculate that in vivo Schwann cells in myelinated axons might act as a local source for sodium channels at the nodal axolemma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ion channels in axon and Schwann cell membranes at paranodes of mammalian myelinated fibers studied with patch clamp.

While recent studies have established the presence of voltage-gated ion channels on Schwann cells in culture and on freshly isolated fibers from mature mammals, an important issue not yet explored is whether Schwann cell channels are regionally specialized. In the nodal region, the intimate association between the Schwann cell and its axon suggests that this is a likely site for functional spec...

متن کامل

Sodium-channel turnover in rabbit cultured Schwann cells.

Radiolabelled saxitoxin has been used as a chemical marker for the voltage-dependent sodium channels expressed in the plasmalemma of rabbit Schwann cells in culture. Proteolytic enzymes destroy this saxitoxin-binding capacity, which gradually reappears with an exponential time constant of about 3.1 days. Exposure of cultured Schwann cells to tunicamycin, an inhibitor of glycosylation, leads to ...

متن کامل

Potassium Channel Regulation in Developmental Myelinogenesis Schwann Cells During Early

The presence of neuronal-like, voltage-gated ion channels on glia has raised questions concerning their physiological roles. Insights into glial channel function can be gained by examining regulation of channel expression during axoglial interactions. We examine the regulation of Schwann cell potassium channels in developing sciatic nerves of newborn rats when myelin is first laid down. During ...

متن کامل

Clustering and mobility of voltage-dependent sodium channels during myelination.

In myelinated axons, voltage-dependent sodium channels are segregated at high density at nodes of Ranvier (Rosenbluth, 1976; Waxman and Quick, 1978; Black et al., 1990; Elmer et al., 1990), a distribution that is critical for the saltatory conduction of action potentials (Huxley and Stampfli, 1949). The factors that specifically control the organization and immobilization of sodium channels at ...

متن کامل

High conductance anion channel in Schwann cell vesicles from rat spinal roots.

Potassium uptake, possibly together with chloride, is one of the presumed functions of Schwann cells in the peripheral nervous system. However, the presence of chloride channels has not been demonstrated in adult Schwann cells. We present here a new method which allows single channel recordings to be made from Schwann cells in situ without enzymatic treatment. Isolated rat spinal roots were spl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 82 3  شماره 

صفحات  -

تاریخ انتشار 1985